Cardiovascular imaging


Head of Department:
Prof. Dr. med. Michael Uder

Group members:

  • PD Dr. Axel Schmid
  • PD Dr. Matthias May
  • Dr. Rafael Heiss
  • Dr. Konstantin Hellwig
  • Dr. Christoph Treutlein
  • Dr. Marco Wiesmüller
  • Dr. Martin Zeilinger
Interscanner reproducibility of cardiac T2 mapping assessed by inter- and intraindividual standardized comparison in long and short axis using a balanced steady-state free
precession (bSSFP) gradient echo sequence.

Cardiac CT and MRI are rapidly evolving techniques with high demands on technology, technician and physician. Speed, workflow and systematic analysis are crucial aspects of CT examinations of the heart in adults and children. In cardiac MRI quantitative myocardial T1- and T2-mapping methods and the introduction of accelerated acquisition techniques represent two of the most important developments within the last years. Research and clinical application of cardiac imaging techniques are performed in close relationship with the Department of Cardiology.

Mapping native T1-, T2- and T2*-relaxation times has emerged as a promising tool to assess pathologies diffusely affecting the myocardium. However, the implementation of cardiac mapping technologies into routine clinical decision-making is still limited by significant inter- and intraindividual variability of relaxation times. The reproducibility of mapping values is affected by scanner hardware, acquisition software and subject-related factors. Our study group focussed on the impact of the scanner system on myocardial T1-, T2- and T2*- relaxation times by assessing the robustness and homogeneity of myocardial mapping results in healthy volunteers in three identical 1.5T CMR systems in order to investigate the interscanner reproducibility.

Compressed sensing is considered as a modern key technology in accelerating MR data acquisition. In cardiac imaging a wide variety of application examples is currently under investigation. Our group applied compressed sensing in complete free-breathing adenosine stress cardiac MRI and in high-resolution 3D water-fat Dixon LGE imaging.

In cooperation with the Department of Nephrology and Hypertensiology our group is participating in a variety of international multicenter studies on radiofrequency, ultrasound and alcohol mediated renal denervation techniques in treating hypertension (e.g. Spyral HTN On-Med study, Spyral HTN Off-Med study, Spyral distal study, Radiance II study, Peregrine Post-Market Study).


Recent publications (selection):

  1. Zeilinger MG, Wiesmüller M, Forman C, Schmidt M, Munoz C, Piccini D, Kunze KP, Neji R, Botnar RM, Prieto C, Uder M, May M, Wuest W. 3D Dixon water-fat LGE imaging with image navigator and compressed sensing in cardiac MRI. Eur Radiol. 2020 Dec 2. doi: 10.1007/s00330-020-07517-x.
  2. Wuest W, May MS, Wiesmueller M, Uder M, Schmid A.  Effect of long term CPAP therapy on cardiac parameters assessed with cardiac MRI. Int J Cardiovasc Imaging. 2020 Sep 14. doi: 10.1007/s10554-020-02024-y. Online ahead of print.
  3. Wiesmueller M, Wuest W, Heiss R, Treutlein C, Uder M, May M. Cardiac T2 mapping: robustness and homogeneity of standardized in-line analysis. J Cardiovasc Magn Reson. 2020 May 28;22(1):39. doi: 10.1186/s12968-020-00619-x.
  4. Treutlein C, Wiesmüller M, May M, Heiss R, Hepp T, Uder M, Wuest W. Complete Free-breathing Adenosine Stress Cardiac MRI Using Compressed Sensing and Motion Correction: Comparison of Functional Parameters, Perfusion, and Late Enhancement with the Standard Breath-holding Examination. Radiology: Cardiothoracic Imaging 2019; 1(3):e180017 •
  5. Nau D, Wuest W, Rompel O, Hammon M, Gloeckler M, Toka O, Dittrich S, Rueffer A, Cesnjevar R, Lell MM, Uder M, May MS. Evaluation of ventricular septal defects using high pitch computed tomography angiography of the chest in children with complex congenital heart defects below one year of age. J Cardiovasc Comput Tomogr. 2019 Jul-Aug;13(4):226-233. doi: 10.1016/j.jcct.2019.01.023.
  6. Heiss R, Wiesmueller M, Treutlein C, Seuss H, Uder M, May M, Wuest W. Cardiac T2 star mapping: standardized inline analysis of long and short axis at three identical 1.5 T MRI scanners. Int J Cardiovasc Imaging. 2019 Apr;35(4):695-702. doi: 10.1007/s10554-018-1503-1.
  7. Heiss R, Wiesmueller M, Uder M, May MS, Wuest W. Native cardiac T1 Mapping: Standardized inline analysis of long and short axis at three identical 1.5 Tesla MRI scanners. Eur J Radiol. 2018 Oct;107:203-208. doi: 10.1016/j.ejrad.2018.09.009.
  8. Böhm M, Kario K, Kandzari DE, Mahfoud F, Weber MA, Schmieder RE, Tsioufis K, Pocock S, Konstantinidis D, Choi JW, East C, Lee DP, Ma A, Ewen S, Cohen DL, Wilensky R, Devireddy CM, Lea J, Schmid A, Weil J, Agdirlioglu T, Reedus D, Jefferson BK, Reyes D, D'Souza R, Sharp ASP, Sharif F, Fahy M, DeBruin V, Cohen SA, Brar S, Townsend RR; SPYRAL HTN-OFF MED Pivotal Investigators.  Efficacy of catheter-based renal denervation in the absence of antihypertensive medications (SPYRAL HTN-OFF MED Pivotal): a multicentre, randomised, sham-controlled trial. Lancet. 2020 May 2;395(10234):1444-1451. doi: 10.1016/S0140-6736(20)30554-7.
International cooperations
  • Prof. A. Bogdanov, University of Massachusetts Medical School, USA
  • Prof. W. Fahl, University of Wisconsin-Madison, USA
  • Prof. A. Guermazi, Boston University School of Medicine, USA
  • Prof. J. Titze, Vanderbilt University, Nashville, Tennessee, USA
  • Prof. S. Trattnig, Medizinische Universität Wien, Wien, Österreich